Home » Definite Integrals

# Category Archives: Definite Integrals

## A collection of definite integrals

Several well known definite integrals can be found in the book* Table of integrals series and products *by *I.S. Gradshteyn and I.M. Ryzhik*. In this article, I present a few definite integrals which I could not find the this book. This work on definite integral is inspired by Ramanujan’s legendary work in definite integrals. I must say that finding beautiful integrals is definitely addictive.

Entry 1. If denotes the Catalan constant and denotes the Euler–Mascheroni constant then

Entry 2. If then

Entry 3. If then

Entry 4.

Entry 5.

Entry 6. If then

Entry 7. If denotes the Catalan constant then

Entry 8.

## Zeta, gamma and the Stirling numbers

Ramanujan’s work on definite integrals is legendary. In the words of Hardy, “… *he could of course evaluate any evaluable definite integral.” *Today the great days of definite integrals and beautiful identities are long gone. Nevertheless Ramanujan’s work continues to inspire such beauties. In this article, I present a few definite integrals inspired by the works of Ramanujan. (I have not seen these above integral in mathematical literature. If anybody knows otherwise, please give me the reference.)

The integral formula

where is well known and can be found in [1]. However this form does not help much in the sense that it does not make it any easier to evaluate the n-th order partial derivative in the RHS. In this article we shall consider definite integrals of the type

where , and are positive integers and . We shall see that it is possible to explicitly represent evaluate such definite integrals in terms of the Euler–Mascheroni constant , the Riemann zeta function and the Stirling number of the first kind . As usual let denote the harmonic number defined as . We define and . We have the following definite integrals.

**Entry 1**.

**Entry 2**.

**Entry 3**.

**Corollary**. We have the following formula for the Stirling numbers of the first kind.

**References**

[1] I.S. Gradshteyn and I.M. Ryzhik – Table of integrals series and products, (2007)