Home » Definite Integrals » A collection of definite integrals

# A collection of definite integrals

### Blog Stats

• 16,000 hits

Several well known definite integrals can be found in the book Table of integrals series and products by I.S. Gradshteyn and I.M. Ryzhik. In this article, I present a few definite integrals which I could not find the this book. This work on definite integral is inspired by Ramanujan’s legendary work in definite integrals. I must say that finding beautiful integrals is definitely addictive.

Entry 1. If $G$ denotes the Catalan constant and $\gamma$ denotes the Euler–Mascheroni constant then

$\displaystyle{\int_{0}^{\infty}e^{-x^4}\ln^2 x dx = \frac{\Gamma(\frac{1}{4})}{256}\{32G+4\gamma^2+5\pi^2+36\ln^2 2}$

$\displaystyle{+12\pi\ln2+4\gamma\pi+24\gamma\ln2\}}.$

Entry 2. If $Im(a) >0, b>0$ then

$\displaystyle{\int_{0}^{\infty} i^{2ax^b}dx = \frac{1}{b}\Gamma\Big(\frac{1}{b}\Big)\Big(\frac{i}{a \pi}\Big)^{1/b}}.$

Entry 3. If $Re(a) >0, b>1, c>0, d>0$ then

$\displaystyle{\int_{0}^{\infty} \frac{e^{-ax^b}}{1+dx^b} dx = \frac{e^{a/d}}{d^{1/b}}\Gamma\Big(\frac{b+1}{b}\Big)\Gamma\Big(\frac{b-1}{b}, \frac{a}{d}\Big)}.$

Entry 4.

$\displaystyle{\int_{0}^{\infty} \frac{e^{-ax^{-b}}}{1+dx^b} dx = \frac{e^{ad}}{d^{1/b}}\Gamma\Big(\frac{b-1}{b}\Big)\Gamma\Big(\frac{1}{b}, \frac{a}{d}\Big)}.$

Entry 5.

$\displaystyle{\int_{0}^{\infty} \frac{e^{-ax^b}}{1+dx^{-b}} dx = \frac{e^{ad} d^{1/b}}{b^2}\Gamma\Big(\frac{1}{b}\Big)\Gamma\Big(-\frac{1}{b}, ad\Big)}.$

Entry 6. If $a > 0, b > 0$ then

$\displaystyle{\int_{0}^{\infty} \ln\Big(1 + \frac{a^2}{x^2}\Big) \cos (bx) dx = \frac{\pi - \pi e^{-ab}}{b}}.$

Entry 7. If $G$ denotes the Catalan constant then

$\displaystyle{\int_{0}^{1} \Big(\frac{\tan ^{-1} x}{x}\Big)^2dx = G - \frac{\pi^2}{16} + \frac{\pi \ln 2}{4}}.$

Entry 8.

$\displaystyle{\int_{0}^{1} (\tan ^{-1} x)^2dx = -G + \frac{\pi^2}{16} + \frac{\pi \ln 2}{4}}.$